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A theoretical analysis has been carried out on the system consisting of an axisymmetric 
sessile drop resting on a thin elastic solid in the presence of gravity. The solid is treated 
in one case as a thin plate and in the other case as a membrane. The consequences of the 
variational treatment employed are equations relating to contact angle equilibrium, drop 
and solid profiles. It is shown that contact angles are not intrinsic surface properties of 
the phases involved but invoke equally such characteristics as bulk properties of the solid 
and physical dimensions when the solid in question is deformable. 

Key words: Contact angle, Drop profiles, Equilibrium, Theoretical analysis, Thin elastic 
solids, Young's equation. 

INTRODUCTION 

The equilibrium contact angle of a liquid (1) on a solid surface (S) in 
the presence of an immiscible second fluid phase (2) has generally been 
considered to be an intrinsic property of the three phases in question. 
When the solid is undeformable, Young's relaiionshipt is usually 
adopted' 

y s 2 =  y s 1  + y l Z C O S e o  (1) 
?In fact, in the original frequently quoted Reference 1, Young never actually ex- 

pressed mathematically the equation named after him, i.e. equation (I). 
247 
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248 M. E. R. SHANAHAN 
where y represents an interfacial tension or free energy and 8, is the 
equilibrium contact angle measured in liquid 1. Probably the best 
known and simplest derivation of equation (1) depends on the simple 
mechanistic approach of assuming the y terms to be physical tensions 
and then resolving horizontally. This argument was vehemently dis- 
favoured by Bikerman (e.g., Refs. 2,3), who was a strong advocate of 
Young's equation being rejected on the grounds of an improper vertical 
force balance. Nevertheless, in the case of a strictly, mathematically un- 
deformable solid, Young's equation can be derived quite rigorously 
using thermodynamic arguments. In this case, the y terms are usually 
considered as interfacial free energies-whether these are defined as 
Helmholtz or Gibbs free energies is of little i m p ~ r t . ~  Examples of such 
thermodynamic approaches are to be found in Refs. 5-10. 

At various times, others have objected to Young's equation for 
various reasons. Pethica and Pethicall suggested that gravity should 
be taken into account but this seems to have been adequately refuted 
both by the thermodynamic arguments cited above and also by the 
comments made by GrayI2 suggesting an inexact appraisal of the net 
situation. Both Jameson and Del C ~ I T O ' ~  and White14 have conjectured 
that Young's equation may be correct macroscopically but micro- 
scopically, it cannot be valid. Another factor possibly perturbing 
Young's equation is the existence of the much discussed line tension 
(e.g., Ref. 15). Although for what follows it could easily be incor- 
porated, at present it is assumed not to exist. 

The above relates to various work and points of view concerning 
liquids on undeformable substrates. However, as pointed out by 
BikermanZ when considering the vertical tension, in real solids there 
must presumably be some deformation or strain resulting from the force 
required to compensate y I 2  sin 8,. Nevertheless relatively little work 
seems to have been done in this field, although experimental evidence 
does strongly suggest that solid strains should not, under certain 
circumstances, be negle~ted. '~- '~  From a theoretical point of view, 
apparently the first approach including the effects of strain was that by 
Lester.Zo-z2 Later work is given in Refs. 23 and 24, but probably the 
most significant contribution comes from Rusanov.2s.26 However, both 
Lester and Rusanov considered semi-infinite elastic solids in their 
analyses, and although there must surely be some strain involved when 
a sessile drop of liquid is placed on the surface of such a solid, this effect 
wilt normally be minute. The effects of surface strain should be much 
more marked if the solid in question is very thin, and free to be distorted. 
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CONTACT ANGLE EQUILIBRIUM ON THIN ELASTIC SOLIDS 249 

To the author's knowledge, there exists but one reference at present in 
the literature concerning such thin solids and that is the very recent 
paper of Fortesz7 In this work, the equilibrium of thin elastic solids in 
contact with liquid drops is analysed theoretically using force balances. 
For certain cases, calculations are facilitated by considering weightless 
drops. Equilibrium is considered to depend on surface tension and 
elastic forces. 

The purpose of the present study is related in the sense that axisym- 
metric sessile drops on thin elastic solids, modelled by thin plate and by 
membrane theory, are to be considered with an aim to understanding 
better the contact equilibrium when the solid is strained, and to getting 
some theoretical idea of what conformation the system adopts. 
However, instead of considering forces, the approach of minimising the 
total free energy of the system will be adopted. All the mathematics used 
assumes that all phases may be treated by a continuum approach. No 
consideration is given to molecular aspects. 

THEORY 

In the following derivations, the usual implicit assumptions of meniscus 
calculations are taken to hold (solid and fluid homogeneous as far as 
surface state is concerned, immiscibility of phases, etc . . .). 

Figure 1 represents an axisymmetric drop of liquid 1 (radius ro) 
resting in the centre of a thin, circular sheet of an elastic solid, S, of 
radius a, in the presence of a less dense fluid 2. The (conventional) 
contact angle, do, is taken to be < 90' for simplicity. The system initially 
consisting of the flat solid alone has its free energy (F.E.) modified by 
the addition of the drop. This modification will be due to changes in 

4 
a * 

4 
r. 

FIGURE 1 
system used (r.2). x and 4 represent respectively drop and solid profiles. 

Drop of liquid (1)  on solid surface (S) in presence of fluid (2) and coordinate 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
5
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



250 M. E. R. SHANAHAN 

interfacial F.E., gravitational F.E. both of the solid and the liquid, and 
the elastic energy of deformation of the solid. Since we consider here 
only a thin solid, it is assumed that the gravitational F.E. of the solid 
is negligible, although that of the liquid drop will not be. Under these 
conditions, we may define the change in F.E. of the system due to the 
presence of the drop, where the gravitational F.E. of the drop is taken 
with respect to the origin as shown in Figure 1. 

0 

(x2 - 4’) + rE.]dr 

+ 271 [2yS2r(l + 4:)’” - 2y,2r + rE,]dr 
ro s 

In equation (2), yslr yS2  and y l z  represent the three interfacial free 
energies between the respective phases, 6 (r) and x (r) are the profiles 
respectively of the solid surface and liquid upper surface in cylindrical 
coordinates (r, z), the suffix r has its usual meaning of partial dif- 
ferentiation with respect to r, p is the (positive) density difference 
between the two fluids and g is gravitational acceleration. 
The term E, may be interpreted as the elastic, stored energy density 
in the solid (per unit area) and, as will be seen below, may be a function 
of r ,  $r and &r, depending on whether the solid is treated as a plate 
or as a membrane. It should be noted that in this simple geometry, 
it is assumed that the underside of the solid is only in contact with fluid 
2-any supports are considered to touch at mathematical points or at 
most lines. 

At equilibrium, ET will be a minimum subject to the constraint of 
constant drop volume V.  

V =  2x r(X - 4) dr 1 0 

This is a problem of the calculus of variations. We define 

J = E r + A V  

(3) 
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CONTACT ANGLE EQUILIBRIUM ON THIN ELASTIC SOLIDS 251 

where I is a constant, a Lagrange multiplier. Equations (2) and (3) can 
then be represented together in the following form. 

ro (1 

(4) 
J 
0 

where the r#+r dependence of the two integrands may or may not 
exist. For the system to be at a minimum in F.E., any imposed in- 
finitesimal changes in the system must resuIt in a zero change in J, 
i.e. SJ = 0. In the present case, we impose infinitesimal arbitrary changes 
64 and 6 ,  on the profile functions, 4 and x, accompanied by displace- 
ment of the three-phase line by 6ro. These changes are independent, 
except at r = ro, where clearly S41ro = Sxl, and drop volume remains 
constant. Using the classical theory of the calculus of variations, as 
expounded, for example, by S m i r n ~ v , ~ ~  we obtain after some algebra 
the general first variation, SJ, as 

Since S J =  0 and, in general, the infinitesimal changes leading to it 
are arbitrary and independent, the value of the coefficient of each 
is identically zero. We thus have 5 equations which apply to the 
drop/solid/fluid system at equilibrium, although one of them is use- 
less (the term in S4rl ro is identically zero in what follows). 
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252 M. E. R. SHANAHAN 

Before going on to study the two cases of thin elastic solids, atten- 
tion should briefly be paid to the third integral term in equ. (9, i.e. 
that involving Sx.  

It implies that 

and when equation (6) is evaluated using equation (2) and (3), we obtain 

where 1 is equal to - - + pgx(0) , b representing the radius of cur- 

vature at the drop apex.lo 
This is simply the standard capillary equation describing the profile 

of a sessile drop (e.g., Refs. 29, 30). It may seem intuitively obvious but 
it is nevertheless interesting to show mathematically that the axisym- 
metric sessile drop profile equation is unaltered by what may happen 
“underneath”. Clearly contact angles may be modified but this can be 
accounted for by the two constants of integration required to evaluate 
equation (7). 

(‘” ) 

Plates 
In this analysis, we assume that the elastic solid behaves as a thin, flat 
plate which is bent under the effects of the sessile drop. All elastic 
strain energy is considered due to bending. Any elongation is taken to 
be negligible as far as elastic energy is concerned. 

Such a thin plate under bending may be considered to be in plane 
stress, there being a strain but no stress component perpendicular to the 
plate. If in addition shear stresses are absent, it is easy to show, develop- 
ing on Timoshenko and G ~ o d i e r , ~  that the elastic strain energy/unit 
area of plate can be written as 

where E and v are respectively the Young’s modulus and Poisson’s 
coefficient of the solid, t is the plate thickness and R1 and R2 are the 
principal radii of curvature in bending. Given that these radii of 
curvature are given in the present coordinate system by 
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CONTACT ANGLE EQUILIBRIUM ON THIN ELASTIC SOLIDS 253 

1 - cbn -- 
R1 ( I  + q5f)’l2 

and 

that the surface area of a thin hoop of plate at distance r from the origin 
is given by 

27tr (1 + r # ~ ? ) ~ ’ ~ -  6r 

and that’the flexural rigidity of the plate, D, is defined by 

Et3 
D -  

12( 1 - v 2 )  

it is relatively simple to obtain an expression for the elastic, stored 
energy density, E,, given in equation (2). 

Using equation (8) in equation (2), and bearing in mind the definitions 
of F and H in equation (4), equation ( 5 )  may be applied and three 
relationships concerning the axisymrnetric sessile drop on a plate emerge 
(&lr0 and 6% are dealt with above). 

Of these, the two concerning the terms 6ro and 6& are perhaps the 
more interesting concerning directly contact angle equilibrium. Equat- 
ing the coefficient of 6r2 to zero, we obtain after evaluation at r,, and some 
simplification 

(r31 - rs2)*[1 + q5f(r0)1-1’2 + y12[1 + x;(ro)J-l/2 = 0 (9) 

In the derivation of equation (9), it is assumed that $r is continuous at 
ro. This means physically that the plate is intact. A discontinuity in 4, 
would imply infinitely sharp folding, or breaking of the material. 

Considering Figure 2, it can be seen that at rot the angles of inclination 
with respect to the horizontal of the liquid, 8,, and of the solid, a, are 
related to the profile derivatives such that x, ( ro)  = - tan B0 and +r 

(r,,) = tan a. 
Using simple trigonometrical formulae, it can be shown from equa- 

tion (9) that: 
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254 M. E. R. SHANAHAN 

FIGURE 2 The contact region for a thin plate. 

Equation (10) may be taken as a modification of Young’s equation for 
contact angle equilibrium when the strain energy of bending of the plate 
is to be taken into account. Clearly, unless the bending is significant, a 
is very small and in the limit of an undeformable solid as a -+ 0, equation 
(10) reduces to Young’s equation. 

A second relationship concerning contact angle equilibrium can be 
obtained on considering the coefficient of c%$lr,, in equation (5). Putting 
this coefficient equal to zero, evaluation at r = ro and simplification 
leads to 

~ 1 ~ * x ~ ( r ~ ) . [ 1  + xt(ro)l-”z + (y.1 - ~~2)-$4r~) . [1  + #(ro)]-i’2 = 0 (1 1) 

ylZ sin Oo = (x.1 - 7.2) sin Q (12) 

Again using the trigonometrical relations, this reduces to 

The last part of equation ( 5 )  to be considered involves the two integrals 
in 64. As they stand, these two terms should be taken together and 
equated to zero using standard variational arguments, but following 
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CONTACT ANGLE EQUILIBRIUM ON THIN ELASTIC SOLIDS 255 
Courant and Hilbert,32 we shall assume that each integral may be set 
to zero. This leads to 

over the range 0 < r < ro and 

in the range ro g r < a. 
When equation (1 3) is evaluated, we obtain a differential equation 

describing the profile of the bent solid under the drop, i.e. 4. In equation 
(15), q =  (1 + t$f)’/*. 

This fourth-order equation is evidently rather complicated and there- 
fore no attempt has been made to solve it analytically. However, an 
approximate perturbation type solution valid over a restricted range is 
suggested in the appendix to this paper. 

Lastly, application of equation (14) leads to an equation describing 
the profile of the axisymmetric plate outside the drop. This may be 
written in the form 

2r(l + 4f)(&rr + 4 r r )  - 5; - 4x2 + 54; + 44: + 
4:) - 47s2D-1pz4r(1 + = 0 (16) 

(Here the first integration has been performed and the physically 
reasonable boundary condition of all derivatives of 4 tending to zero 
for large r employed.) Equation (16) is also solved approximately in 
the appendix. 

It should be noted that both equations (1 5 )  and (16) require boundary 
conditions for their solutions. These may be obtained, in principle, by 
considering the methods of physical support of the system drop/plate 
(point contact of base of curved plate, clamping of plate outer edge, 
etc.), and the physical properties of the drop of liquid (volume, density, 
etc.), together with contact line equilibrium. 
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256 M. E. R. SHANAHAN 

Membranes 
For the case of the elastic solid being considered as a membrane, it is 
assumed as is that the elastic strain energy in the solid is due 
entirely to stretching. The energy is then proportional to change in area, 
and the constant of proportionality is the tension, T. Given the axial 
symmetry of the case in question, this corresponds to the term E, in 
equation (2) being given by 

(17) 
In the case of a membrane, no energy is associated with bending or 
folding. This means that, in contrast to the plate analysis, 4, may 
become discontinuous although, of course, 4 remains continuous. Of 
course, this is a mathematical model; the real situation will be more like 
that shown in Figure 3, line (b). 

E, = T[(1 + c$f)''* - I] 

FIGURE 3 The contact region for a membrane: (a) mathematical model, (b) probable 
real situation. 

As for the plate, we consider the relationships stemming from the 
coefficients of dr,, 641,,, and 64 being set to zero in equation ( 5 )  when 
applied to the functions defined by equation (2) and (3) and this time 

After equating the coefficient of 6r, to zero, evaluation at ro and 
(17). 

simplification, we obtain 
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CONTACT ANGLE EQUILIBRIUM ON THIN ELASTIC SOLIDS 257 

(ysl +.ys2 + T)[l + 4?(ro)I-’/2 + ylz[ l  + d(r~)]-’/~ = 

(2ysz + 7)  [l + @?(r0)1-1/2 (18) 
where CP represents the function 4 for r >, ro and 4 is now reserved for 
r < ro. Clearly $(ro) = @(r,) but 4,(ro) # CP,(ro) in the general case (cf. 
preceding paragraph). Considering Figure 3, line (a), it can be seen that 
tan f l =  ICP,(ro)l, the sign depending on the orientation of the mem- 
brane beyond the drop (a boundary condition problem). Using the 
trigonometrical formulae referred to above, equation (18) reduces to 

(rsl + yS2 + T )  cos a + y12 cos0, = (27,~ + T )  cos p (19) 

This then constitutes the modified Young equation for contact angle 
equilibrium when the solid is considered as a membrane, and should 
be compared to equation (10) for a plate. Again, if the membrane 
is sufficiently rigid or unbendable, a and f l  are small and in the limit 
of a rigid membrane, a + 0 and f l+  0, equation (19) becomes pre- 
cisely Young’s equation. 

A similar analysis setting the coefficient of dt.&, to zero in equation 
(5) leads to 

(20) (yS1 + yS2 + T )  sin a - y l 2  sine, = f (2y.2 + T)sinfl 

where the minus sign of k should be taken with j as shown in Figure 3. 
Equating the two integral coefficients of 84 in equation (5) separately 

to zero, i.e. assuming the validity of equation (1 3) and (14), leads re- 
spectively to equation (21) and (22). 

It can be seen immediately that equation (21) is simply the capillary 
equation (cf. equation [A), but this time there is a sign change account- 
ing for the fact that we are considering the underside of the drop 
and the usual interfacial tension or free energy is replaced by 
(yS1 + ySz + T). This is to be expected if we consider the situation from 
the point of view of tension. Instead of the usual single interface, here 
we are considering a double-sided “interface” having ysl and ysz on the 
different sides, and in addition, there is an internal mem- 
brane tension, T. 
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258 M. E. R. SHANAHAN 

Equation (22) describes the membrane profile outside the drop. It is 
a standard, well-known differential equation having a general solution 
of the form 

@(r) = A cosh-I (i) + B 

where A and B are constants. Clearly these constants, and those to be 
found in the solution of equation (21), depend on the boundary con- 
ditions. 

DISCUSSION 

The main aspect of this theoretical approach to sessile drops on thin, 
deformable, elastic substrates concerns the modifications to Young’s 
equation for contact angle equilibrium. As pointed out above, both 
equation (10) and (19) representing contact angle equilibrium, re- 
spectively for thin plates and for membranes, reduce directly to Young’s 
equation (1) when the solid is undeformable, i.e., in the limit of angles 
a and /I -.* 0. This does tend to confirm that to all intents and purposes, 
in everyday contact angle evaluation on bulk solids for which solid 
strain is negligible, Young’s equation will be so near to reality that any 
deviations may be totally ignored. It is only on very thin solids, of the 
order of microns thick, that physical deformation plays an important 
role. 

Both equation (10) and (19) can, in fact, be derived directly from the 
simple mechanistic force balance. The horizontal components of the 
tensions ysl, ys2 and y l z  are at equilibrium in equation (lo). Although 
the liquid/fluid y l Z  may be considered as a true tension, such treatment 
for the solid/fluid yS1 and ys2 is more dubious. As a result, the appeal- 
ingly simple procedure of force resolution is best treated with care. 

Nevertheless, the absence of elasticity terms in the overall equilib- 
rium, in the case of the plate, may be construed as reflecting the fact that 
all stresses within the plate itself are self compensating. Although bend- 
ing moments exist, the sum, in the direction parallel to the surface, of 
the tensile and compressive forces is zero. However, in the case of the 
membrane, forces due to the elastic tension Tare present and must be 
allowed for in the mechanistic equilibrium equation when resolving 
horizontally. It should be noticed that, since in the general case of a 
membrane, the inclination of the solid takes on two distinct angles a and 
/I on opposite sides of the contact line, the terms yp2 cos a and ys2 cos fl 
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CONTACT ANGLE EQUILIBRIUM ON THIN ELASTIC SOLIDS 259 

corresponding to the underside of the membrane must also be allowed 
for in the equilibrium. Clearly in the case of an (intact) thin plate, the 
underside plays no role since only one angle of inclination, a, is involved 
and the forces cancel. Equation (19) indeed shows that the tension 7 
may be considered in exactly the same context as they terms. This is also 
borne out by equation (21) describing the membrane profile under the 
drop. Equation (21) is simply the capillary equation where the total 
tension at the interface to be considered is the sum of the three effects, 
two interfacial tensions ysl and ys2, and the mechanical, elastic tension 
T. 

Equation (10) was also derived by Lester for a bulk solid.*” In the 
event of a membrane behaving such that the inclination is the same on 
each side of the contact line, i.e. a = /I, then equation (19) reduces to 
equation (10). Since in practice both a and /I will usually be small, cos 
a and cos fl will be virtually equal. As a result the contact equilibrium 
on both elastic plates and membranes can be described to a first 
approximation by equation (10). Fortes came to a similar conclusion27 
but also derived an equilibrium equation for the membrane involving 
the ratio ylz/T(his equation [28] or [ A I ) .  No direct comparison is really 
justified since he treated a weightless drop and ignored second-order 
terms in his derivation based on energy minimisation. Although, as 
stated above, too much importance should not be attached to mechan- 
ical arguments, the fact that equation (19) can be derived in this manner 
is satisfying. Fortes remarks that in the case of a weightless drop, 
which corresponds in the present nomenclature to angle f l  = 0, the 
mechanical approach of horizontal force resolution leads also to his 
equation (28). Nevertheless, he neglects the fact that the membrane has 
two sides in his force balance. Were this fact to be allowed for, equation 
(19) of this paper would result. 

Considering equation (12) and (20), it can again be seen that the 
simple, mechanistic approach would have sufficed. Both of these 
may be considered as representing the equilibrium of forces when the 
vertical components are balanced, allowing still for the dubious 
assumption of ysl and ysz being treated as tensions. The reasons 
described above adequately explain why only y terms come into play for 
the plate but the tension Tcannot be neglected for the membrane. These 
equations may or may not have satisfied Bikerman’s doubts2 since his 
main contention was the lack of vertical equilibrium in Young’s 
equation. Equation (19) and (20) for the membrane may be considered 
as modified expressions for Neumann’s triangle34 in which T is added. 
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260 M. E. R. SHANAHAN 
However, if the force balance for the plate is resolved perpendicularly 
to the surface of the plate, Bikerman’s objection arises again-what 
balances yI2 sin (0, + a)? Here it becomes clear that the simple resolu- 
tion of interfacial tensions is, in general, inadequate for deriving 
equilibrium conditions. In this case, the true, detailed force balance 
involves internal tensions and compressions within the plate. In 
addition, it should not be overlooked that the present derivation is itself 
somewhat simplistic in the sense that no real material will really behave 
exactly as a mathematically thin, elastic plate, or as a membrane, as 
described by linear elasticity theory. As for materials showing plasticity 
or hysteresis effects in viscoelasticity, the present treatment will be 
entirely inadequate and solution of the problem for a ge1,16 for example, 
would be a formidable task. In addition, apart from some probably 
small deviations from the “pure” theory when considering elastic solids, 
sight must not be lost of the molecular implications which cannot 
possibly be tackled using a continuum approach. 

Probably the most important comment to make about equation (10) 
and (19) [or equation (12) and (ZO)] is that they show that the contact 
angle is not an intrinsic property of a given system liquid/solid/fluid 
(even if effects of a potential line tension are neglected). The true contact 
angle should now be defined as (0, + a), as opposed to the apparent, or 
conventional, contact angle do. Now the y terms are intrinsic to the 
surface characteristics of the three phases, but angles a (and f i )  also 
depend on several external factors such as the mechanical bulk proper- 
ties of the solid, drop size and the physical support for the system. As 
a consequence, when a and/or fi change, 8, must also change for the 
equilibrium equations to hold. Under usual conditions with bulk solids, 
both a and j? are so small as to be negligible and as such 8, can be 
considered to be an intrinsic parameter related only to the surface 
properties. Nevertheless, from a fundamental point of view, apparent 
and real contact angles do depend on mechanical characteristics of the 
system as well as on free surface energies. Similarly contact angle does 
depend on gravity, but implicitly. 

The boundary conditions required to solve equation ( 1 3 ,  (16), (21) 
and (22) describing the profile of the solid will involve knowledge of the 
equilibrium at the contact line. With the present lack of experimental 
data providing physical values for the required boundary conditions, 
accurate solution of the profile equations would represent a fairly 
complex task (except of course in cases where a and f i  are sufficiently 
small to be negligible, but this would be begging the question). The 
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calculations are feasible in principle, but it is felt that application to 
experimental data when available is preferable. Nevertheless, a brief 
account of approximate solutions for the plate profile together with a 
semi-quantitative representation of a hypothetical drop/plate system are 
to be found in the appendix to this paper. In addition, an order of 
magnitude calculation has been effected and briefly shows that typically, 
a drop of I-bromonaphthalene of contact radius 0.1 cm can be expected 
to provoke a distortion amounting to the angle, cc, being equal to I", 
when placed on a sheet of mica of ca. 7 pm thickness. 

CONCLUSIONS 

The conformation of a system consisting of a sessile drop of liquid lying 
on a thin elastic solid in the presence of a gravitational field has been 
studied with a principal aim of obtaining insight into contact equili- 
brium when elastic strain cannot be neglected. For the sake of simplicity, 
the axisymmetric case has been treated. Both solids modelled by thin 
elastic plates and by membranes have been considered. By minimising 
the free energy of the system due to interfacial free energies, poten- 
tial energy and elastic strain energy within the solid using methods of 
the calculus of variations, several identities emerge which lead 
mathematically to relations concerning angle equilibrium and both drop 
and solid profiles. The essential conclusion is that, contrary to Young's 
equation in the case of an undeformable solid where the contact angle 
is a characteristic uniquely of the surface properties of the phases 
considered, when solid strains exist, contact equilibrium and the angles 
involved are dependent on other parameters such as the bulk properties 
of the solid, physical dimensions and methods of support for the system. 
(This is true whether or not effects of line tension are included.) 

Of secondary importance in this study is the conclusion that the drop 
profile equation is unmodified by the behaviour of the elastic solid 
(except that boundary conditions are altered). 

The profile of the solid under the drop obeys the classic capillary 
equation in the case of a membrane. This is perhaps to be expected since 
the elastic tension can be considered similar to interfacial tension. In the 
case of a thin plate, the profile equation is very complicated but a simple 
perturbation solution shows the first-order effect of flexural rigidity to 
be that of increasing the radius of curvature of an essentially circular 
profile. Given the complexity of the profile equations a full exploitation 
of them should await the availability of suitable experimental data, 
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262 M. E. R. SHANAHAN 
although an order of magnitude calculation has been effected (cf. 
appendix). 

APPENDIX 
Approximate solutions to the equations describing the 
profile of a thin plate supporting a sessile drop 
In the case of the profile equations of a membrane both inside and 
outside an axisymmetric drop, no major problems occur in principle 
since for the former, the differential equation is the well-known capillary 
e q u a t i ~ n ~ ~ . ’ ~  which already has several n ~ m e r i c a l ~ ~ * ’ ~  and ap- 

solutions to be found in the literature, and for the latter, 
an analytical solution exists, viz. equation (23). However, the profile 
equations are rather more complex for a plate. Consider first equation 
(1 5). This describes the profile of the plate under the drop when elasticity 
and gravity play a role, as well as surface effects. If both gravity and the 
flexural rigidity were zero, the profile would be circular i.e. 

(Al) & = R - (R2 - y2)1/2 

where R is the radius of curvature. (This solution assumes the origin 
to be at the base and in the centre of the plate). We now assume, in 
common with Ref. 39, that the profile is perturbed by these added 
effects. Defining 

and 
D 

w =  
(r.1 + Y32) 

we may consider the true profile, #(r, E ,  w )  to be a Maclaurin expan- 
sion about the circular solution without gravity or elastic effects, 
4(r,O,O). 

t$(r,E,w) = 4(r, 0, 0) + E - -  + O ( E ~ , E ~ , W ~ )  (A4) 

Equation (15) can be rearranged in the form 
:: l~..O.O, + w - ~ l ~ r * o , o ,  
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and 

We differentiate equation (AS) with respect to E and evaluate at 
E = o = 0. A differential equation in ur results which can be evaluated 
using equation (Ai), and its derivative with respect to r. The solution 
takes the form 

R3 
3 

- --In[R + (R2 - r2)’/’] + C,  (A8) 
C1 R3 

r )  ’(‘) = (R2 - 2 112 

where C1 and C2 a re  con3ants to be obtained from the 
boundary conditions of the problem. (All the following C. are con- 
stants). 

A similar process may be applied to the elasticity dependence. Equation 
(A5) is differentiated with respect to o and evaluated at w = E = 0. After 
considerable simplification and use being made of equation (Al) and 
its first two derivatives with respect to r, we obtain 

.El -0 (A9) 
A[?]+ r 
dr 113 (yS1 + yS2) am m = c = O  

This expression can be integrated simply to 

1 [ R + (R:- r z ) 1 / 2 ]  ] - --In 1 
RZ(R2 - f 2 ) 1 / 2  R3 v(r) = C3 R3 

Since v (0) must remain finite, the term in (In r )  must be removed 
and hence C3 is zero. We thus have 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
5
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



264 M. E. R. SHANAHAN 

as the simple perturbation term due to flexural rigidity, C5 contain- 

The two perturbation terms, u (r) and v (r), contain four constants 
to be determined from the boundary conditions. By imposing, for 
example, the conditions of u(0) = v ( 0 )  = 0, which correspond physically 
to the drop/plate system resting on a flat, rigid, horizontal support, 
the number of constants is reduced to two. These two may then be 
evaluated, at least in principle, from $(r,,) and 4,(ro), or other suitable 
values ( & ( U ) , ~ , ( U ) ,  etc.). 

Finally, the first-order perturbation solution is given by combining 
equation (Al), (A4), (A8) and (A1 I). 

I 

FIGURE A1 Semi-quantitative representation of an axisymmetric sessile drop on a 
deformed plate. The boundary condition corresponding to the value of x (ro) = t#~ 
(ro) is artificially exaggerated so that the general effect of plate bending may be seen. 

Note that to first-order, the essential effect of flexural rigidity in the 
plate is to increase the radius of curvature of the spherical interface 
S1 with respect to its value on a hypothetical “soft” solid. This is 
evident on considering the Taylor expansion for a circle. 

If 4 ( R )  = (R2 - then 4(R  + 6R) is given by 

4(R  + 6R) = +(R)  + ~ R . ~ R ( R )  -t 0 ( 6 R 2 )  ( A W  

Comparison of the term in 6 R  with equation (A1 1) makes the matter 
clear. 

The last comment concerning this perturbation solution to equation 
(AS) concerns its range of validity. Clearly, it is never exact, but it will 
give a good approximation provided the perturbations are not too great. 
Using a homogeneity argument similar to that in Ref. 39, it can be 
shown that the approximation should be good provided both the 
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dimensionless parameters Eri and orG2 are both sufficiently small, say 
less than about 1. 

Equation (16) describes the plate profile for r > ro. Since under nor- 
mal circumstances, the degree of plate deformation will be relatively 
small, we shall assume that both 4 r  and << 1. In addition, since 4 
is missing we may pose p = &. We can therefore ignore terms of 0b2) 
or greater and 0@,2). The term in yszD-’ will usually be negligible 
and equation (1 6) then reduces to 

r2p,  + rpr - p = 0 (A 13) 

This is a form of Euler’s differential equation42 and the general solution 
is 

p = l + C , r  c6 

Clearly it is reasonable physically to assume p -+ 0 at large r and there- 
fore we take C, to be zero. Solution of equation (A14) then gives simply 

+(r) = Cdlnr + C8 

Determination of c6 and C8 should be considered within the context 
of the boundary conditions (e.g. continuity of qL at ro, value of 

In practice, the deformation of the solid will be very small (unless the 
plate really i very thin, of the order of microns). However, to give some 
idea of th k“ allure of an axisymmetric sessile drop on a flexible plate, the 
above equations have been used (in conjunction with the perturbation 
approach for drop profile39) to study an “artificial” or semi- 
quantitative example in which q5(ro) is sufficiently large for the cur- 
vature of the solid to be noticeable. This semi-quantitative solution is 
shown in Figure Al. The dotted lines correspond to the zero-gravity, 
zero-flexural rigidity solution which was perturbed, mathematically. 

In order to estimate the order of magnitude of the plate distortion at 
the contact line, i.e. angle a, the above analysis was employed but for 
a small drop (ro = 0.1 cm) for which the gravitational energy can be 
reasonably neglected. Equation (A1 1) and (A12) imply that 4 is then 
approximately circular and it is known that x is. Equation (2) may then 
be used to assess the approximate free energy of the drop/solid and this 
must be minimised with respect to the radii of 4 and x with the constraint 
of constant volume (Equation (3)). The problem is a fairly straight- 
forward case of differential calculus in this simplified form and will 

4 (ro) ). 
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266 M. E. R. SHANAHAN 
therefore not be explained in detail. Suffice it to say that using typical 
values of the physical parameters in question, it was found that a drop 
of 1-bromonaphthalene (yI2  = 44-6 rnJ.rr2)  will provoke a value of a 
of ca. 1" on an unclamped mica sheet (E1: 10 GPa, v = $ ,  ysz = 120 
mJ.rn-2 43 of ca. 7 pm thickness, allowing for a value of 00 of ca. 50". 
The effect of changing the overall radius of the plate, a, is small. 
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